3-4. LLM优化结构

概述

LLM优化结构是Mei智能决策的核心大脑,负责将用户的自然语言转化为精确的区块链操作。这个系统就像一个经验丰富的投资顾问,不仅理解您说的话,更能理解您没说出口的需求。通过多层次的智能分析和优化算法,确保每个用户请求都能以最高效、最安全的方式执行。

核心架构设计

多阶段处理流水线

自然语言输入 (Natural Language Input)

意图识别与分析 (Intent Recognition & Analysis)

上下文理解与记忆 (Context Understanding & Memory)

任务分解与规划 (Task Decomposition & Planning)

路径优化与选择 (Path Optimization & Selection)

执行监控与调整 (Execution Monitoring & Adjustment)

结果反馈与学习 (Result Feedback & Learning)

智能决策引擎

采用分层决策架构,从简单的规则匹配到复杂的机器学习推理。

意图识别与理解

多维度意图分析

不仅仅分析用户说了什么,更要理解用户想要什么。

意图分类系统

interface IntentAnalysis {
  // 主要意图类别
  primaryIntent: {
    category: 'query' | 'transaction' | 'analysis' | 'management' | 'learning';
    confidence: number;
    subcategory: string;
  };
  
  // 隐含意图
  implicitIntents: {
    riskTolerance: 'conservative' | 'moderate' | 'aggressive';
    timeHorizon: 'immediate' | 'short_term' | 'long_term';
    investmentGoal: 'profit' | 'learning' | 'diversification';
  };
  
  // 情感分析
  sentiment: {
    overall: 'positive' | 'neutral' | 'negative';
    urgency: number; // 0-1
    confidence_level: number; // 0-1
  };
}

上下文感知

理解对话的前后文,提供连贯的服务体验:

class ContextManager {
  private conversationHistory: ConversationTurn[] = [];
  private userProfile: UserProfile;
  private sessionContext: SessionContext;
  
  analyzeContext(userInput: string): ContextAnalysis {
    return {
      referencedEntities: this.extractEntityReferences(userInput),
      temporalContext: this.analyzeTimeReferences(userInput),
      conversationFlow: this.analyzeConversationFlow(),
      userState: this.inferUserState()
    };
  }
  
  private inferUserState(): UserState {
    // 基于历史对话推断用户当前状态
    const recentInteractions = this.getRecentInteractions(5);
    return {
      knowledgeLevel: this.assessKnowledgeLevel(recentInteractions),
      currentFocus: this.identifyCurrentFocus(recentInteractions),
      emotionalState: this.analyzeEmotionalProgression(recentInteractions)
    };
  }
}

任务分解与规划

智能任务分解

将复杂的用户请求分解为可执行的原子操作。

分解策略

interface TaskDecomposition {
  async decomposeComplexTask(userIntent: UserIntent): Promise<TaskPlan> {
    // 1. 识别核心任务
    const coreTask = this.identifyCoreTask(userIntent);
    
    // 2. 分析依赖关系
    const dependencies = this.analyzeDependencies(coreTask);
    
    // 3. 生成执行计划
    const executionPlan = this.generateExecutionPlan(coreTask, dependencies);
    
    // 4. 优化执行顺序
    const optimizedPlan = this.optimizeExecutionOrder(executionPlan);
    
    return optimizedPlan;
  }
}

并行化分析

识别可以并行执行的任务,提升整体效率:

class ParallelizationOptimizer {
  identifyParallelTasks(tasks: Task[]): ParallelExecutionPlan {
    const dependencyGraph = this.buildDependencyGraph(tasks);
    const parallelGroups = this.groupIndependentTasks(dependencyGraph);
    
    return {
      sequentialStages: parallelGroups.map(group => ({
        parallelTasks: group,
        estimatedTime: Math.max(...group.map(task => task.estimatedDuration))
      })),
      totalEstimatedTime: this.calculateTotalTime(parallelGroups)
    };
  }
}

路径优化算法

多目标优化

在执行效率、成本控制、风险管理之间找到最佳平衡。

优化目标权重

interface OptimizationObjectives {
  speed: number;        // 执行速度权重
  cost: number;         // 成本控制权重  
  reliability: number;  // 可靠性权重
  privacy: number;      // 隐私保护权重
}

class MultiObjectiveOptimizer {
  optimizeExecutionPath(
    availablePaths: ExecutionPath[],
    objectives: OptimizationObjectives,
    userConstraints: UserConstraints
  ): OptimizedPath {
    // 计算每条路径的综合评分
    const scoredPaths = availablePaths.map(path => ({
      path,
      score: this.calculateCompositeScore(path, objectives)
    }));
    
    // 应用用户约束
    const feasiblePaths = scoredPaths.filter(
      scored => this.satisfiesConstraints(scored.path, userConstraints)
    );
    
    // 选择最优路径
    return this.selectOptimalPath(feasiblePaths);
  }
}

动态路径调整

执行过程中根据实时情况调整路径:

class DynamicPathAdjuster {
  async monitorAndAdjust(executionContext: ExecutionContext): Promise<void> {
    while (!executionContext.isComplete()) {
      const currentMetrics = await this.collectRealTimeMetrics();
      
      if (this.shouldAdjustPath(currentMetrics)) {
        const newPath = await this.recalculateOptimalPath(
          executionContext.remainingTasks,
          currentMetrics
        );
        
        await this.applyPathAdjustment(executionContext, newPath);
      }
      
      await this.wait(1000); // 每秒检查一次
    }
  }
}

智能学习与适应

用户行为学习

通过观察用户的行为模式,持续优化服务质量。

学习模型

interface UserLearningModel {
  // 偏好学习
  preferences: {
    tradingStyle: 'conservative' | 'balanced' | 'aggressive';
    preferredTokens: string[];
    riskTolerance: number;
    timePreferences: TimePattern[];
  };
  
  // 行为模式
  behaviorPatterns: {
    decisionSpeed: number;        // 决策速度
    informationDepth: number;     // 信息深度偏好
    followUpFrequency: number;    // 后续关注频率
  };
  
  // 反馈学习
  feedbackHistory: {
    satisfactionScores: number[];
    commonComplaints: string[];
    successfulInteractions: InteractionPattern[];
  };
}

个性化优化

基于学习到的用户特征调整服务策略:

class PersonalizationEngine {
  async personalizeResponse(
    userModel: UserLearningModel,
    standardResponse: Response
  ): Promise<PersonalizedResponse> {
    // 调整信息详细程度
    const informationLevel = this.determineInformationLevel(userModel);
    
    // 调整风险提示强度
    const riskWarningLevel = this.calculateRiskWarningLevel(userModel);
    
    // 个性化推荐
    const recommendations = await this.generatePersonalizedRecommendations(userModel);
    
    return {
      ...standardResponse,
      informationLevel,
      riskWarningLevel,
      personalizedRecommendations: recommendations
    };
  }
}

实时优化机制

性能监控与调优

持续监控系统性能,自动调整优化策略。

性能指标追踪

interface PerformanceMetrics {
  responseTime: {
    intentRecognition: number;
    taskPlanning: number;
    pathOptimization: number;
    execution: number;
  };
  
  accuracy: {
    intentAccuracy: number;
    executionSuccess: number;
    userSatisfaction: number;
  };
  
  efficiency: {
    resourceUtilization: number;
    parallelizationRatio: number;
    cacheHitRate: number;
  };
}

自适应调优

class AdaptiveTuner {
  async optimizeSystemParameters(metrics: PerformanceMetrics): Promise<void> {
    // 根据响应时间调整并发度
    if (metrics.responseTime.execution > this.responseTimeThreshold) {
      await this.increaseConcurrency();
    }
    
    // 根据准确率调整模型参数
    if (metrics.accuracy.intentAccuracy < this.accuracyThreshold) {
      await this.refineIntentModel();
    }
    
    // 根据资源利用率调整缓存策略
    if (metrics.efficiency.cacheHitRate < this.cacheThreshold) {
      await this.optimizeCacheStrategy();
    }
  }
}

错误处理与恢复

智能错误诊断

不仅识别错误,更要理解错误的根本原因。

interface ErrorDiagnosis {
  errorType: 'user_input' | 'system_internal' | 'blockchain_network' | 'external_service';
  severity: 'low' | 'medium' | 'high' | 'critical';
  rootCause: string;
  suggestedRecovery: RecoveryStrategy[];
  userFriendlyExplanation: string;
}

class IntelligentErrorHandler {
  async diagnoseAndRecover(error: Error, context: ExecutionContext): Promise<RecoveryResult> {
    // 诊断错误
    const diagnosis = await this.diagnoseError(error, context);
    
    // 选择恢复策略
    const recoveryStrategy = this.selectRecoveryStrategy(diagnosis);
    
    // 执行恢复
    const recoveryResult = await this.executeRecovery(recoveryStrategy, context);
    
    // 学习和改进
    await this.learnFromError(diagnosis, recoveryResult);
    
    return recoveryResult;
  }
}

渐进式降级

当系统出现问题时,优雅地降级服务而不是完全失败。

class GracefulDegradation {
  async handleServiceDegradation(serviceLevel: ServiceLevel): Promise<DegradedResponse> {
    switch (serviceLevel) {
      case 'full_service':
        return await this.provideFull Service();
      
      case 'limited_service':
        return await this.provideLimitedService();
      
      case 'basic_service':
        return await this.provideBasicService();
      
      case 'emergency_mode':
        return await this.provideEmergencyResponse();
    }
  }
}

安全与隐私保护

敏感信息处理

在LLM处理过程中保护用户隐私和敏感信息。

class PrivacyProtection {
  async sanitizeInput(userInput: string): Promise<SanitizedInput> {
    // 识别敏感信息
    const sensitiveEntities = await this.identifySensitiveEntities(userInput);
    
    // 替换或遮蔽敏感信息
    const sanitizedText = this.maskSensitiveData(userInput, sensitiveEntities);
    
    // 保留处理所需的上下文
    const preservedContext = this.preserveNecessaryContext(sensitiveEntities);
    
    return {
      sanitizedText,
      preservedContext,
      sensitiveEntities
    };
  }
}

LLM优化结构的设计理念是"智能而不失控制"。通过多层次的智能分析和优化,Mei能够提供类人的服务体验,同时确保每个决策都是可解释、可控制的。这个系统不断学习和进化,但始终以用户的最佳利益为核心目标。

Last updated